Search results for "Nanocrystalline silicon"

showing 9 items of 9 documents

Amorphous Silicon Nanotubes via Galvanic Displacement Deposition

2013

Amorphous silicon nanotubes were grown in a single step into a polycarbonate membrane by a galvanic displacement reaction conducted in aqueous solution. In order to optimize the process, a specifically designed galvanic cell was used. SEM images, after polycarbonate dissolution, showed interconnected nanotube bundles with an average length of 18 μm and wall thickness of 38 nm.The deposited silicon was revealed by EDS analysis, whilst X-ray diffraction and Raman spectroscopy showed that nanotubes have an amorphous structure. Silicon nanotubes were also characterized by photo-electrochemical measurements that showed n-type conductivity and optical gap of ~1.6 eV. Keywords: Silicon nanotubes, …

Amorphous siliconSilicon nanotubes dispalcement deposition nanostructures lithium batteries solar cellsNanotubeMaterials scienceSiliconNanocrystalline siliconchemistry.chemical_elementNanotechnologyAmorphous solidlcsh:Chemistrysymbols.namesakechemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica Applicatalcsh:Industrial electrochemistrylcsh:QD1-999chemistryvisual_artElectrochemistrysymbolsvisual_art.visual_art_mediumGalvanic cellPolycarbonateComposite materialRaman spectroscopylcsh:TP250-261
researchProduct

Cooling of Hot Electrons in Amorphous Silicon

1997

ABSTRACTMeasurements of the cooling rate of hot carriers in amorphous silicon are made with a two-pump, one-probe technique. The experiment is simulated with a rate-equation model describing the energy transfer between a population of hot carriers and the lattice. An energy transfer rate proportional to the temperature difference is found to be consistent with the experimental data while an energy transfer independent of the temperature difference is not. This contrasts with the situation in crystalline silicon. The measured cooling rates are sufficient to explain the difficulty in observing avalanche effects in amorphous silicon.

Amorphous siliconeducation.field_of_studyMaterials scienceCondensed matter physicsSiliconPopulationNanocrystalline siliconchemistry.chemical_elementElectronchemistry.chemical_compoundCrystallographychemistryLattice (order)Charge carrierCrystalline siliconeducationMRS Proceedings
researchProduct

Some aspects of pulsed laser deposition of Si nanocrystalline films

2009

International audience; Nanocrystalline silicon films were deposited by a picosecond laser ablation on different substrates in vacuum at room temperature. A nanocrystalline structure of the films was evidenced by atomic force microscopy (AFM), optical and Raman spectroscopies. A blue shift of the absorption edge was observed in optical absorption spectra, and a decrease of the optical phonon energy at the Brillouin zone centre was detected by Raman scattering. Early stages of nanocrystalline film formation on mica and HOPG substrates were studied by AFM. Mechanism of nanocrystal growth on substrate is discussed.

Laser ablationChemistryNanocrystalline siliconAnalytical chemistryPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesNanocrystalline materialElectronic Optical and Magnetic MaterialsPulsed laser depositionCondensed Matter::Materials Sciencesymbols.namesakeAbsorption edgeCondensed Matter::SuperconductivityPhysical Sciences0103 physical sciencessymbolsThin film010306 general physics0210 nano-technologyRaman spectroscopyInstrumentationRaman scatteringThe European Physical Journal Applied Physics
researchProduct

Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids

2015

The intense light scattered from metal nanoparticles sustaining surface plasmons makes them attractive for light trapping in photovoltaic applications. However, a strong resonant response from nanoparticle ensembles can only be obtained if the particles have monodisperse physical properties. Presently, the chemical synthesis of colloidal nanoparticles is the method that produces the highest monodispersion in geometry and material quality, with the added benefits of being low-temperature, low-cost, easily scalable and of allowing control of the surface coverage of the deposited particles. In this paper, novel plasmonic back-reflector structures were developed using spherical gold colloids wi…

Materials sciencePhotovoltaics light trapping plasmonics Mie scatterers thin film silicon solar cells.NanoparticlePhysics::OpticsBioengineeringMie scatterersMie scattererSettore ING-INF/01 - Elettronica7. Clean energyLight scatteringplasmonicsthin film silicon solar cellsMechanics of MaterialGeneral Materials SciencePlasmonic solar cellElectrical and Electronic EngineeringThin filmPlasmonbusiness.industryScatteringMechanical EngineeringChemistry (all)Surface plasmonNanocrystalline siliconGeneral ChemistryPlasmonicThin film silicon solar cellphotovoltaicsMechanics of MaterialsOptoelectronicslight trappingMaterials Science (all)businessPhotovoltaic
researchProduct

Residual crystalline silicon phase in silicon-rich-oxide films subjected to high temperature annealing

2002

Structural properties of silicon rich oxide films (SRO) have been investigated by means of micro-Raman spectroscopy and transmission electron microscopy (TEM). The layers were deposited by plasma enhanced chemical vapor deposition using different SiH4/O2 gas mixtures. The Raman spectra of the as-deposited SRO films are dominated by a broad band in the region 400-500 cm-1 typical of a highly disordered silicon network. After annealing at temperatures above 1000°C in N2, the formation of silicon nanocrystals is observed both in the Raman spectra and in the TEM images. However, most of the precipitated silicon does not crystallize and assumes an amorphous microstructure. © 2002 The Electrochem…

Materials scienceSiliconNanocrystal RamanAnnealing (metallurgy)Analytical chemistrychemistry.chemical_elementMineralogySurfaces Coatings and FilmSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materiasymbols.namesakePlasma-enhanced chemical vapor depositionMaterials ChemistryElectrochemistryCrystalline siliconRAMAN-SPECTROSCOPY; MICROCRYSTALLINE SILICON; THIN-FILMS; SCATTERING; SPECTRA; SUPERLATTICES; NANOCRYSTALS; SIO2-FILMS; SIZERenewable Energy Sustainability and the EnvironmentNanocrystalline siliconSurfaces and InterfacesCondensed Matter PhysicsCrystallographic defectSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAmorphous solidchemistrysymbolsRaman spectroscopy
researchProduct

One-step formation of nanostructures on silicon surfaces using pure hydrogen-radical-initiated reactions

2013

One-step formation of silicon nanowires, sheets, and texture surface on a silicon substrate has been achieved using hydrogen-radical etching reactions. Metallic tungsten and for comparison purposes a tungsten hot wire, were used as catalysts for the hydrogen-molecular cracking. It was shown that a variety of surface structures on silicon such as inverted pyramid texture, V-groove texture, dense silicon nanowire growth over texture, and nanosheet structure can be obtained by controlling the process conditions. The obtained results suggested that the formation of nanotungsten silicide particle is an essential prerequisite to obtain these structures. The particles work as an etching mask again…

Materials scienceSiliconNanowireNanocrystalline siliconchemistry.chemical_elementNanotechnologySurfaces and InterfacesSubstrate (electronics)TungstenCondensed Matter Physics7. Clean energySurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistryEtching (microfabrication)SilicideMaterials ChemistryTexture (crystalline)Electrical and Electronic Engineeringphysica status solidi (a)
researchProduct

Cathodoluminescence and photoluminescence study of trap centers in amorphous silicon oxynitride

2002

Amorphous silicon oxynitride (a-SiO/sub x/N/sub y/) films with different compositions were prepared using low-pressure chemical vapor deposition (LPCVD) technique, The cathodoluminescence and photoluminescence of this samples were measured from the red band to the ultraviolet band to study the trap centers in silicon oxynitride. A 1.8-1.9 eV band was found and is attributed to the oxygen and nitrogen atoms with unpaired electrons whereas the 2.7 eV band is attributed to two-fold coordinated silicon atoms with two electrons. The 5.4 eV shoulder is due to the peroxy radicals and other ultraviolet bands are supposed to due due to the Si-Si bonds.

inorganic chemicalsAmorphous siliconMaterials sciencePhotoluminescenceSilicon oxynitrideSiliconNanocrystalline siliconAnalytical chemistrychemistry.chemical_elementCathodoluminescenceChemical vapor depositionmedicine.disease_causechemistry.chemical_compoundchemistrymedicineUltraviolet2000 22nd International Conference on Microelectronics. Proceedings (Cat. No.00TH8400)
researchProduct

Comparative study of initial stages of copper immersion deposition on bulk and porous silicon

2013

Initial stages of Cu immersion deposition in the presence of hydrofluoric acid on bulk and porous silicon were studied. Cu was found to deposit both on bulk and porous silicon as a layer of nanoparticles which grew according to the Volmer-Weber mechanism. It was revealed that at the initial stages of immersion deposition, Cu nanoparticles consisted of crystals with a maximum size of 10 nm and inherited the orientation of the original silicon substrate. Deposited Cu nanoparticles were found to be partially oxidized to Cu2O while CuO was not detected for all samples. In contrast to porous silicon, the crystal orientation of the original silicon substrate significantly affected the sizes, dens…

inorganic chemicalsMaterials scienceImmersion depositionSiliconNanochemistryNanoparticlechemistry.chemical_elementNanotechnologyPorous siliconcomplex mixtureschemistry.chemical_compoundHydrofluoric acidMaterials Science(all)Porous siliconnanotechnology nanotechnology and microengineering nanoscale science and technologyGeneral Materials ScienceNano ExpressNanocrystalline silicontechnology industry and agricultureCondensed Matter Physicsequipment and suppliesCopperstomatognathic diseasesElectron backscatter diffractionChemical engineeringchemistrycopper nanoparticles; electron backscatter diffraction; immersion deposition; nanotechnology nanotechnology and microengineering nanoscale science and technology; porous siliconCopper nanoparticlesElectron backscatter diffractionNanoscale Research Letters
researchProduct

Amorphous silicon nanotubes

2017

In the following, the attention will be focused on the silicon nanotube (SiNTs) that is a highly desired form of silicon for its fundamental role in the miniaturization trend of the electronic devices. After a description of the properties and applications of SiNTs and their fabrication methods, the attention will be focused on chemical vapour deposition (CVD) template synthesis that is the most usual synthetic method for this material. Then, galvanic template synthesis will be described as a general method for the fabrication of different metals and oxides nanostructures, therefore the use of this technique for synthesizing SiNTs will be detailed. Characterization methods will be also desc…

silicon nanotube galvanic template synthesis photoelectrochemistryOptical properties of carbon nanotubesAmorphous siliconchemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicataMaterials scienceAmorphous carbonChemical engineeringchemistryNanocrystalline siliconAmorphous solid
researchProduct